Section A [52 marks]

Answer all questions in this section.

1) Solve the simultaneous equations

3x  +  2y  =  5x  –  y  + 11  =  xy  +  6 .

[6]

2) Differentiate  
[image: image1.wmf]2

1

1

x

x

+

-

  with respect to x .


[3]

3) If  
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4) Find the range of values of  x  for which  ( 2x + 1 ) ( x – 3 ) > 22 .

[4]

5) Find the coordinates of the stationary points on the curve defined by 

y  =  x ( x ( 2 )² +  5. Determine the nature of these points .

[6]

6) Sketch the graph of y  = ln ( 2x – 4 ) for 2 < x ≤ 5 .

Find the equation of tangent at the point where x = 3, and hence find the coordinates of the point where this tangent meets the y–axis.

[6]

7) The function y is defined by  
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 and use it to calculate the approximate value for   
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8) A body moves in a straight line so that its distance , s metres from a fixed point O in the line at time t seconds is given by the formula  
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Find 


i)
the initial position of the body ,

ii)
the initial velocity of the body ,

iii)
the values of t when the body is instantaneously at rest ,

iv)
the distance travelled in the first 3 seconds.


[7]

9) The parametric equations of a curve are 
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a) Find  
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b) Show that the line 
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  is a tangent to the curve.
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10) A sphere is increasing in volume at the rate of  
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.  Given that the volume of a sphere of radius r is  
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, calculate the radius of the sphere at the instant when the radius is increasing at the rate of 0.5 cm/s.
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Section B [48 marks]

Answer any four questions from this section.

11) Given that 
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show that 
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Given that A is acute and that tan A = 2, find , without using calculators, the value of 

i) tan (A+B)

[5]

ii) sin B

[2]

12) Find all the angles between 0o and 360o  which satisfy the equations:

a) 2cos2 x = 1 + sin x
[4]

b) 
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c) 8 sin z + 6 cos z = 4

[5]

13) When  the  height  of liquid  in  a  container is  h metres , the volume of  liquid  is  V cm3, where 
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i) Find an expression for 
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ii) The liquid enters the container at a constant rate of 0.45 m3/s, find the rate at which the height of liquid is increasing when V = 2.5 m3.

[12]

14) (a)
The parametric equations of a curve are 
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Find the values of  t  where the curve meets the line  x + y = 4 .

[5]

(b) A curve is given 
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i) Find the Cartesian equation.

ii) Find the gradient of the normal to the curve where t = 1.

[7]

15) (a)
If  
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(b)
Using graph paper, draw the graph of 
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 for –1 < x < 0, taking values of x at intervals of 0.25.  By drawing an appropriate straight line on your graph, obtain an approximate solution to the equation  
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16) (a)
Given that  y = x2 + 5x, use calculus to find, in terms of k , 

an approximate percentage increase in  y  when x increases from 

5  to  5 + k, where k is small.

[6]


(b)









The diagram shows the rectangles ABCD and DPQR, where AR = 2 cm, CP = 4 cm, RD = x cm and the area of DPQR is 50 cm2.

i) show that the area , A cm2 of ABCD is given by 
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Given that x can vary,

ii) find an expression for 
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iii) find the value of x so that the rectangle ABCD has a minimum 



area.
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